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Purpose. To derive a QSPR model for estimation of aqueous solu-
bility of organic compounds.
Methods. Solubility data for 930 diverse compounds was investigated
with principal component regression analysis. This set of compounds
consists of pharmaceuticals, pollutants, nutrients, herbicides, and pes-
ticides. The diversity of this collection was analyzed using MACCS
fingerprint and BCUT chemistry space.
Results. The training set of the solubility data is as diverse as the
Available Chemicals Directory, and more diverse than the MDL
Drug Data Report. Forty-six molecular descriptors were screened
using a genetic algorithm. A QSPR model with a squared correlation
coefficient (r2) of 0.92, a root mean square error of 0.53 log molar
solubility (log Sw), an average absolute estimation error of 0.36 log
Sw, and a cross-validated q2 of 0.91 was derived. The QSPR model
was validated with a test set of 249 compounds not included in the
training set. The absolute estimation error for the test set of com-
pounds was 0.39 log Sw.
Conclusions. A highly predictive QSPR model for estimating aque-
ous solubility was derived and validated. This model can be used to
estimate aqueous solubility for virtual screening and combinatorial
library design.

KEY WORDS: solubility; Genetic algorithm; diversity; principal
component regression; AquaSol database.

INTRODUCTION

Virtual screening and combinatorial chemistry are firmly
established powerful techniques in drug discovery efforts,
particularly in lead discovery and optimization. Incorporation
of medicinal chemistry knowledge (drug-likeness, SAR, and
QSAR information) and biopharmaceutical properties into
library design is a prerequisite to rational drug design (1). In
recent years, various computational methods have been de-
veloped to filter and select sublibraries with relevant physi-
cochemical and biopharmaceutical properties such as lipo-
philicity, polar surface area, hydrogen bond numbers, and
aqueous solubility (1–3).

Since the pioneering work of Hansch and co-workers (4)
correlating aqueous solubility with octanol/water partition co-
efficient, numerous methods for estimating aqueous solubility
have been developed (5–11). These can be grouped into three
classes based on the type of physicochemical properties and
molecular descriptors used in the analysis: (i) based on ex-
perimentally determined physicochemical properties such as

partition coefficient, melting point, etc (6); (ii) based on
group-contribution theory (9); (iii) based on calculated mo-
lecular descriptors such as cLog P, molecular surface area,
topological indices, etc (10,11). We think that the model(s)
based on calculated molecular descriptors is most suitable for
general virtual screening and library design purpose. Most of
the earlier models were derived from simple, monofunctional,
environmentally interesting compounds. These models per-
formed poorly in estimating the solubility of drug-like mol-
ecules with multifunctional molecular structures (2). Other
models derived from structural analogs do not have broad
applicability for virtual screening.

The structural diversity of compounds in a training set
used to derive a model determines whether the derived model
can be broadly applicable to different classes of compounds
and thus suitable for general virtual screening and library
design applications. In our ongoing work to develop a more
general predictive solubility model(s) for virtual screening
and library design we have started with a structurally diverse
set of compounds, mostly drug-like molecules, and a set of
calculated molecular descriptors to derive a QSPR model for
the estimation of aqueous solubility of organic compounds. In
this report, the solubility data for a diverse set of compounds
gathered from the literature and in-house sources was ana-
lyzed using principal component regression based on a set of
calculated molecular descriptors.

METHODS

Aqueous Solubility

The aqueous solubility data consist of a subset from
AquaSol database (12) and the literature (13–22), and in-
house measured solubility data. The AquaSol database con-
tains large amounts of solubility records extracted from a
number of scientific references. It covers a variety of com-
pounds including pharmaceuticals, pollutants, nutrients, her-
bicides, pesticides, agricultural and industrial compounds
(12). Most of the compounds in AquaSol database are simple,
nonfunctional chemicals or environmentally interesting com-
pounds. To increase the representation of drug-like molecules
in our analysis, we included our in-house measured solubility
and solubility data collected from the literature for drugs and
drug-like molecules. All solubility data were converted to log-
(molarity), log Sw. The aqueous solubility (log Sw) used in this
study ranges from −11.62 to 4.75. A set of 930 compounds was
selected as a training set and a set of 249 compounds as a test
set.

Molecular Descriptors

All molecular descriptors used in this investigation were
implemented and calculated with MOE software (23).

Diversity Analysis

Using MACCS Fingerprint

Molecular diversity was analyzed using average pairwise
Tanimoto coefficient (Tc) for the training set of the solubility
data as reported in our previous publication (24). The average
Tc values were calculated using the MACCS fingerprints

1 Computer-Aided Drug Discovery, Pharmacia, 301 Henrietta Street,
Kalamazoo, Michigan 49007

2 To whom correspondence should be addressed. (e-mail: hua.gao@
pharmacia.com)

Pharmaceutical Research, Vol. 19, No. 4, April 2002 (© 2002) Research Paper

497 0724-8741/02/0400-0497/0 © 2002 Plenum Publishing Corporation



implemented in MOE (23). The MACCS keys are bit string
representations of structures, where each bit refers to the
presence or absence of a unique substructural pattern. The
Tanimoto coefficient for two molecules 1 and 2 was calculated
as Tc � Bc/(B1 + B2 − Bc), where Bc is the number of com-
mon bits set, B1 and B2 are the bits set in the fingerprints of
molecules 1 and 2, respectively.

The Available Chemicals Directory (ACD) (25) and
MDL Drug Data Report (MDDR) (26) were used as refer-
ence databases in molecular diversity analysis. A total of
85,949 compounds with molecular weight less than 700 and
containing no metals, Si, and B elements were extracted from
the MDDR. A subset of 18,683 representative compounds
was selected from the ACD using a cell-based selection algo-
rithm implemented in DiverseSolutions (27). A set of 138
estradiol analogs was collected from the literature as a refer-
ence of a congeneric set of compounds (28).

Using BCUT Chemistry Space

Pearlman and Smith have developed a novel cell-based,
low-dimensional chemistry space representation algorithm
(partitioning chemistry space into hypercubic cells) that en-
ables reference to both inter-compound distances and abso-
lute position of compounds in chemistry space using BCUT
descriptors (27). Using the chi-squared algorithm imple-
mented in DiverseSolutions a six-dimensional chemistry
space (see Table I), which best represents the diversity con-
tained in the ACD database was defined. Pearlman and Smith
recommend a resolution (number of bins per axis), which
yields roughly 12% to 16% occupancy (fraction of non-empty
cells). Hence, the chemistry space was equally partitioned
into 6 bins along each co-ordinate. The partitioned chemistry
space thus contains 66 � 46,656 cells.

Two cell-based measures can be used to characterize the
intrinsic diversity of a compound collection in chemistry space:
1) Pcell (Percentage of cells occupied), Pcell � (Nocc.cells/Ncells)
× 100, where Nocc.cells is the number of occupied cells, Ncells is
the total number of cells in the chemistry space; 2) Peff (Ef-
fectiveness of coverage of chemistry space by occupied cells),
Peff � (Nocc.cells/Ncpds) × 100, where Ncpds is the total number
of compounds in the collection. Pcell gives a measure of the
coverage of chemistry space, and Peff yields a measure of the
effectiveness of this coverage.

QSPR Analysis

Principal Component Regression (PCR) Analysis

The PCR algorithm implemented in MOE was used for
the QSPR analysis. In this study, variable selection was

achieved using a genetic algorithm developed in our group
(24).

Neural Network Analysis

The neural network analysis was carried out using Neu-
ralWare software (29). A three-layered, fully connected neu-
ral network was trained by the standard back-propagation
learning algorithm with a sigmoid activation function for hid-
den nodes. The input and output values were scaled between
0.1 and 0.9, and adjustable weights between neurons were
given random values between −0.5 and 0.5. A number of
50,000 learning cycles was used.

RESULTS AND DISCUSSION

Diversity Analysis

The calculated average Tc values for ACD, MDDR, and
the 138 estradiol analogs are 0.25 ± 0.12 (average ± SD), 0.39
± 0.11, and 0.78 ± 0.12, respectively, although the training set
in our study has an average Tc value of 0.21 ± 0.17. Based on
the average Tc values, the solubility dataset is as diverse as
the ACD, and more diverse than the MDDR. Because the
MACCS type of fingerprint represents the presence and ab-
sence of different substructural and functional groups in a
given molecule, the relatively low average Tc value of the
solubility dataset indicates it contains very diverse structural
and functional features.

In the BCUT chemistry space analysis, the ACD (total of
144,684 compounds), which is considered as a good represen-
tation of diverse compounds occupies 5,498 of 46,656 cells of
the chemistry space. Thus, the percentage of cells occupied by
the ACD compounds is 11.8%. The effectiveness of coverage
is 3.8%. The solubility dataset of compounds occupies 382 of
the 46,656 cells. The Pcell for the solubility set is 0.8% and the
Peff is 41.1%. In other words, the solubility dataset covers
0.8% of the chemistry space with a much higher effectiveness
of 41.1%. The higher effectiveness of the solubility dataset
shows that it is �intrinsically diverse�. The coverage of chem-
istry space is understandably low because of the small number
of compounds (930) attempting to cover a chemistry space
binned into 46,656 cells. Fig 1. shows that the solubility
dataset spans the entire ACD chemistry space. The overall
results from the diversity analysis indicate that the solubility
dataset has a high structural diversity and covers a very broad
range of chemistry space.

QSPR Analysis

The genetic algorithm used in the variable selection had
an initial population of 120 chromosomes, a good population
of 20 chromosomes, a uniform crossover rate of 0.5, and a
mutation rate of 0.05. With this configuration of the genetic
algorithm, a set of 24 out of 46 molecular descriptors was
selected as a preferred set of descriptors for the training set of
compounds. The 24 molecular descriptors used in the model
and their definitions are listed in Table II. Fig. 2 and Fig. 3
show the squared correlation coefficient increases and the
root mean square error (RMSE) decreases with the increase
in the number of principal components used.

Equation (1) is the estimated normalized linear equation
using 24 principal components. Ninety-two percent (r2 �

Table I. BCUT Descriptors Used to Define the ACD Chemistry Space

Symbol Definition

BCUT-CHRG1 BCUT_gastchrg_S_invdist6_0.60_R_H
BCUT-CHRG2 BCUT_gastchrg_S_invdist_1.50_R_L
BCUT-HA BCUT_haccept_S_invdist_0.60_R_H
BCUT-HD BCUT_hdonor_S_invdist_0.45_R_H
BCUT-POL1 BCUT_tabpolar_S_invdist6_1.25_R_L
BCUT-POL2 BCUT_tabpolar_S_invdist_0.50_R_H
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0.92) of the variance can be explained with Eq. (1). In this
equation, n is the number of data points, r the correlation
coefficient, RMSE, q the cross-validated correlation coeffi-
cient, and AAEE the average absolute estimation error.

log Sw � 2.34 − 0.41 log P − 0.24 b_ar + 0.35 0�v
C

− 0.31 1�C − 0.83 1�� + 0.34 2�� Eq. (1)

+ 0.12 SV6 − 0.10 SV8 − 0.17 SV9 − 0.79 VDM
+ 0.44 vsa_h + 0.12 kaaCH

+ 0.05 kaasC − 0.05 kaaaC + 0.03 ksNH2

+ 0.06 kssNH + 0.10 kaaN − 0.06 ksssN

+ 0.07 kddsN + 0.23 ksOH + 0.27 kdO

+ 0.08 kssO + 0.07 ksF + 0.02 kssS

n � 930, r2 � 0.92, q2 � 0.91, RMSE � 0.53, AAEE � 0.36

Further analysis indicates that the 24 molecular descrip-
tors used are orthogonal except some covariance between
0�v

C and 1�C (r2 � 0.80), 0�v
C and VDM (r2 � 0.70), 0�v

C and
vsa_h (r2 � 0.70), 1�� and 2�� (r2 � 0.70), 1�� and vsa_h (r2

� 0.70), b_ar and kaaCH (r2 � 0.70). The model with 24
principal components was selected as the solubility estimation
model. The observed and calculated solubility data of the
training set are plotted in Fig. 4. The orthogonality of the 24
molecular descriptors explains why a high number of princi-
pal components are needed in Eq. (1). Due to the intrinsic
diversity of the training set, to capture the underlying struc-

Table II. Molecular Descriptors Used in the QSPR Model

Symbol Definitiona

b_ar Number of aromatic bonds
log P Log partition coefficient
SV6 bin 5 Slog P
SV8 bin 7 Slog P
SV9 bin 8 Slog P
VDM vertex distance magnitude index
vsa_hyd VDW hydrophobic surface area
0�vc zero order carbon valence connectivity index
1�c first order carbon valence connectivity index
1�� first alpha modified shape index
2�� second alpha modified shape index
kaaCH Kier E-state for ---CH--
kaasC Kier E-state for ---C

|
--

kaaaC Kier E-state for ---C
¦
--

ksNH2 Kier E-state for -NH2

kssNH Kier E-state for —N
H

—

kaaN Kier E-state for ---N---

ksssN Kier E-state for

kddsN Kier E-state for

ksOH Kier E-state for –OH
kdO Kier E-state for �O
kssO Kier E-state for —O—
ksF Kier E-state for –F

kdssS Kier E-state for —S
�

—

a ---, aromatic bond; -, single bond; �, double bond.
Fig. 3. Plot of RMSE vs. number of principal components (RMSE:
non-cross-validated; RMSEcv: cross-validated; RMSEpred: test set).

Fig. 1. Two-dimensional projections of the six-dimensional ACD
chemistry space (yellow dots: ACD compounds; red dots: training set
of compounds).

Fig. 2. Plot of squared correlation coefficients vs. number of principal
components (r2: non-cross-validated; r2

cv: cross-validated; r2
pred: test

set).

Estimation of Aqueous Solubility 499



tural features of structure-solubility relationship, many mo-
lecular descriptors including Kier’s indices had to be used in
the correlation. The aqueous solubility of a compound de-
pends on three factors: 1) the entropy of mixing; 2) the dif-
ference between the solute-water adhesive interactions and
the sum of the solute-solute and water-water cohesive inter-
actions; and 3) the solute-solute interactions in the crystal
lattice of crystalline solutes (6). Increase in hydrogen bonding
and polarity of solutes generally enhances aqueous solubility.
However, for solid compounds, the increase in hydrogen
bonding and polarity could also contribute to crystal lattice
stability, thus decreasing aqueous solubility. Considering the
complicated nature, interpreting the contributions of molecu-
lar descriptors to both solute-water interaction in the aqueous
phase and solute-solute interaction in the crystal lattice is
difficult. Nevertheless, it is apparent from Eq. (1) that solu-
bility decreases with increasing hydrophobicity (negative cor-
relation with log P). The effects of molecular shape on solu-
bility are contained in the connectivity and shape indices. All
E-state indices for heteroatoms capable of forming hydrogen
bond positively contribute to the aqueous solubility. Our ob-
jective of the study is to develop a model for estimating solu-
bility. A detailed interpretation of structure-solubility rela-

tionship, and the derived PCR model is beyond the scope of
this report.

It has been pointed out that there are some nonlinear
dependencies between some molecular descriptors and the
aqueous solubility (log Sw) (10). Therefore, the solubility data
of the training set was also analyzed with neural network to
detect the possible nonlinear dependencies. It turned out that
the neural network model (data not shown) was not as good
as the derived PCR model. Also, the results suggest that there
are no significant nonlinear dependencies between the mo-
lecular descriptors used and the aqueous solubility analyzed.

Validation of the QSPR Model

To evaluate the predictive ability of the derived QSPR
model, the solubilities for a set of 249 compounds not in-
cluded in the training set were calculated from the model. The
estimation has a r2

pred of 0.91, a RMSE of 0.49 log Sw, and an
AAEE of 0.39 log Sw. The experimental and calculated values
for the set are plotted in Fig. 5. The solubility data from the
literature is summarized in APPENDIX I. The validation re-
sult is consistent with the QSPR model. The test set of com-
pounds covers very diverse structures, ranging from simple
chemicals to pharmaceuticals with complex structures such as
HIV protease inhibitors. The AAEE for 7 HIV protease in-
hibitors is 0.41 log Sw. The results indicate that the derived
QSPR model is highly stable and predictive, thus may have
broad applicability of solubility estimation for many classes of
compounds.

The prediction results of the training set and the test set
of compounds are summarized in Table III. For the training
set, 74% of solubility data was estimated within an error of 0.5
log Sw, 94% within an error of 1 log Sw. In the case of the test
set, 69% of data was predicted within an error of 0.5 log Sw,
and 96% within an error of 1 log Sw. It has been pointed out
that the experimental solubility can differ by 1.0 log Sw, es-
pecially for compounds with very low solubility (19). The
plots in Figs. 4 and 5 also show that the compounds with lower
solubilities have larger variance. In our analysis, only two-
dimensional (2D) descriptors and descriptors containing im-
plicit three-dimensional (3D) information such as Kier’s
shape indices were used. Explicit 3D descriptors were not
used to avoid bias of the analysis due to predicted conforma-
tional effects. In our view, a priori solubility estimation using
method(s) with a multi-parameter equation like ours should
be very useful for ‘rank-ordering’ of virtual library com-
pounds and prioritization of their synthesis.

CONCLUSIONS

A highly predictive QSPR model was derived based on
the calculated molecular descriptors for a diverse set of com-

Table III. Summary of Solubility Prediction

Compounds

Range of AAEE

0 ∼ 0.5 0.5 ∼ 1 1 ∼ 2 2 ∼ 3

Training set No. of compounds 684 183 56 7
% of total 74 20 6 0.7

Test set No. of compounds 143 59 7
% of total 68 28 3

Fig. 5. Plot of experimental (exp.) and calculated (cal.) solubility data
of the test set of compounds.

Fig. 4. Plot of experimental (exp.) and calculated (cal.) solubility data
of the training set of compounds.
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APPENDIX I. Solubility Data of Compounds from the Literature in the Test Set

compound

log Sw*

compound

log Sw

exp. cal. exp. cal.

atropine −2.12 −2.99 nopinen −3.91 −3.52
acetaminophen −2.62 −2.79 �-myrcene −3.58 −2.86
anethole trithione −5.80 −4.25 N2-acetylacyclovir −1.92 −1.21
dithiolethione −2.48 −1.51 O-acetylacyclovir −0.86 −1.66
didanosine −0.90 −0.98 o-phenanthroline −3.34 −3.50
delavirdine −4.76 −4.34 fenchyl alcohol −2.27 −2.77
efavirenz −4.57 −5.17 �-pinene oxide −2.59 −2.89
indinavir −3.94 −3.48 �-ionone −3.06 −3.38
ritonavir −5.16 −4.70 carveol −1.88 −2.53
amprenavir −4.00 −3.81 �-terpineol −1.91 −2.32
saquinavir −4.33 −4.98 5-Et-5-iPr-BA −2.15 −2.36
3-POM-5,5-DHa −4.68 −4.15 5-Et-5-allyl-BA −1.61 −1.98
3-OOM-5,5-DHb −6.52 −4.95 5-Et-5-(3MBE)-BA −2.25 −2.41
5-phenyldithiolethione −5.64 −4.08 5,5-diphenyl-BA −4.20 −3.24
dimethylthiolethione −3.42 −3.05 5,5-di-iPr-BA −2.77 −2.74
5,5-Me2-BAc −1.74 −1.10 5-iPr-5-(3MBE)-BA −2.59 −2.77
5-Me-5-allyl-BA −1.16 −1.58 5-tBu-5-(3MBE)-BA −3.55 −3.12
5-Me-5-phenyl-BA −2.38 −2.28 5-allyl-5-phenyl-BA −2.37 −2.64
5-Me-5-(3MBE)-BAd −2.60 −2.02 5,5-diethyl-2-S-BA −2.17 −2.29
5,5-(CH2)2-BA −1.89 −0.95 5-Et-5-(1MB)-2-S-BAc −3.68 −3.48
5,5-(CH2)3-BA −1.66 −1.38 5,5-(CH2)7-BA −2.98 −2.93
5,5-(CH2)4-BA −2.35 −1.80 5,5-(CH2)10-BA −4.59 −3.95
5,5-(CH2)5-BA −3.06 −2.19 5,5-(CH2)5-2-S-BA −3.46 −2.91
5,5-(CH2)11-BA −5.80 −5.00 5,5-(CH2)6-BA −3.17 −2.57
5IDUf −2.25 −1.65 5�-COC4H9-5IDU −3.40 −3.02
5�-COC2H5-5IDU −2.46 −2.47 5�-COtBu-5IDU −3.34 −3.07
5�-COC3H7-2�-5IDU −2.84 −2.75 5�-COC6H5-5IDU −3.48 −3.09
5�-COiC3H7-2�-5IDU −2.76 −2.81 5�-(COC6H4-p-NO2)-5IDU −3.30 −3.61
4-Hydroxypyridine 1.02 0.19 5�-(COC6H4-p-OMe)-5IDU −3.55 −3.11
ethyl cinnamate −2.31 −2.13 2-pinene −3.66 −3.27
acetazolamide −2.49 −1.84 methazolamide −1.92 −2.54
phenylacetic acid −1.38 −1.17 2-heptanone −1.22 −1.19
malathion −3.36 −3.26 p-aminophenol −0.83 −0.97
piperonal −1.63 −1.51 diazion −3.76 −3.90
acrylamide 0.92 0.79 sorbitol 1.09 1.25
propoxur −2.04 −2.49 heptanoic acid −1.59 −1.39
cinnamaldehyde −1.61 −1.37 undecane −4.07 −4.02
quinhydrone 0.22 −0.09 salol −2.43 −3.11
2,4-dimethylquinoline −3.47 −3.34 ioxynil −4.40 −4.56
maleic hydrazide 0.38 0.29 metolazone −4.47 −4.89
2,3-Dichlorophenoxyacetic acid −2.52 −2.83 3-bromophenyl isothiocyanate −3.80 −3.69
daminozide 0.22 0.17 propyzamide −3.34 −3.97
pentamethylmelamine 0.20 −0.14 ethofumesate −3.46 −3.54
cis-1,2-dimethylcyclohexane −2.69 −2.95 2,3,6-trichlorophenoxyacetic −3.36 −3.71
thiabendazole −3.73 −3.74 acid
allopurinol −1.02 −0.93 m-fluorobenzoic acid −1.52 −1.59
p-iodo-benzylisothiocyanates −4.11 −4.10 2,2-dimethylhex-3-yne −2.29 −2.30
thymol −2.22 −2.29 norflurazon −4.04 −4.13
p-chloroaniline −1.67 −1.58 triadimefon −3.05 −2.95
crotonic acid 0.23 0.49 dinicotinic acid −0.46 −0.81
dimethirimol −1.77 −2.46 suberic acid −1.73 −1.42
cortisone −3.81 −3.35 quinidine −3.70 −4.35
fonofos −4.20 −4.02 phoxim −4.75 −4.44
coumarin −2.53 −2.27 aspirin −1.62 −1.94
glucose 0.68 0.94 DMPA −4.80 −5.16
2-nitrobenzaldehyde −1.97 −1.83 aspartic acid 1.11 1.20
protoporphyrin −7.02 −7.15 cystine −0.52 −0.25
tetrachloromethane −3.40 −3.33 3-methyl-1-butene −0.69 −0.52
Shikimic acid −0.06 −0.06 caffeine −0.98 −0.96
fructose 0.64 0.65 thiram −3.90 −3.95
sulfanilic −1.21 −1.61 3-Methyl-2-pentanone −0.74 −0.86
sulfamerazine −3.12 −2.64 thiourea 0.25 0.81
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pounds. The derived model was validated with the test set of
compounds not included in the training set. Because this
model is based on a set of calculated molecular descriptors
instead of molecular fragments, it may be used in solubility
estimation of compounds with new functional groups and new
ring systems, and also in virtual screening and library design.
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compound
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compound
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chloropicrin −3.39 −3.79 3,4,5-trichlorophenoxy acetic acid −3.40 −3.71
1,1,2-trichloroethane −1.45 −1.37 3-thenoic acid −1.12 −0.98
2,4-DB −3.13 −3.36 2-methylnaphthalene −3.62 −3.29
methidathion −3.95 −3.44 m-toluic acid −1.58 −1.59
3-methylpentane −1.64 −1.69 iodofenphos −6.62 −6.11
�-Furole 0.04 −0.10 p-sec-butylphenol −1.77 −2.32
Acamol −1.03 −1.35 nicotinic acid −0.84 −0.42

Substituents log Sw

W X Y Z R1 R2 exp. cal.
C O C O H Et −3.68 −3.79
C N(Et) N O H Me −3.32 −3.29
N N(Et) N O H Me −2.62 −2.75
N N(Et) N O 2,4-Me2 H −4.55 −3.50
N N(ePr) N O H Me −2.88 −3.16
N N(Et) N S H Me −4.63 −3.80
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N N(Et) N O 2-Cl Me −4.11 −3.76
N N(Et) N O 2-N(Me)EtOH H −3.36 −2.57

* exp.: experimental value; cal.: calculated value.
a POM: pentanolyoxymethyl.
b OOM: octanoloxymethyl.
c BA: barbituric acid.
d 3MBE: 3-methylbut-2-enyl.
e 1MB: 1-methylbutyl
f 5IDU: 5-Iodo-2�-deoxyuridine.
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